Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
EDOGAWA CONAN

chứng minh

a , \(sinasin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)=\frac{1}{4}sin3a\) Áp dụng tính \(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}\)

b , \(cosacos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{4}cos3a\) Áp dụng tính \(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}\)

Nguyễn Việt Lâm
19 tháng 6 2020 lúc 0:27

\(sina.sin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)\)

\(=-\frac{1}{2}sina\left[cos\frac{2\pi}{3}-cos2a\right]=-\frac{1}{2}sina\left(-\frac{1}{2}-cos2a\right)\)

\(=\frac{1}{4}sina+\frac{1}{2}sina.cos2a=\frac{1}{4}sina+\frac{1}{4}sin3a-\frac{1}{4}sina\)

\(=\frac{1}{4}sin3a\)

\(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}=sin\frac{\pi}{9}sin\left(\frac{\pi}{3}-\frac{\pi}{9}\right)sin\left(\frac{\pi}{3}+\frac{\pi}{9}\right)=\frac{1}{4}sin\frac{\pi}{3}=\frac{\sqrt{3}}{8}\)

\(cosa.cos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{2}cosa\left(cos\frac{2\pi}{3}+cos2a\right)\)

\(=\frac{1}{2}cosa\left(cos2a-\frac{1}{2}\right)=\frac{1}{2}cosa.cos2a-\frac{1}{4}cosa\)

\(=\frac{1}{4}cos3a+\frac{1}{4}cosa-\frac{1}{4}cosa=\frac{1}{4}cos3a\)

\(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}=cos\frac{\pi}{18}.cos\left(\frac{\pi}{3}-\frac{\pi}{18}\right).cos\left(\frac{\pi}{3}+\frac{\pi}{18}\right)=\frac{1}{4}cos\frac{\pi}{6}=\frac{\sqrt{3}}{8}\)


Các câu hỏi tương tự
Nguyễn Thùy Dương
Xem chi tiết
Tú Nguyễn
Xem chi tiết
Ái Nữ
Xem chi tiết
yoonsic
Xem chi tiết
tống khánh thiên
Xem chi tiết
Tú Nguyễn
Xem chi tiết
_ừm ♥  _(# nhạt #)
Xem chi tiết
Tú Nguyễn
Xem chi tiết
Lê Thanh Thúy
Xem chi tiết