Chứng minh \(4a\left(a+b\right)\left(a+1\right)\left(a+b+1\right)+b^2\ge0\)
cho a,b,c đều dương . Chứng minh \(\left(\frac{4a}{b+c}+1\right)\left(\frac{4b}{a+c}+1\right)\left(\frac{4c}{a+b}\right)>25\)
Cho biểu thức: \(C=\left(\frac{2+\sqrt{a}}{2-\sqrt{a}}-\frac{2-\sqrt{a}}{2+\sqrt{a}}-\frac{4a}{a-4}\right):\left(\frac{2}{2-\sqrt{a}}-\frac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)
Chứng minh \(B\ge0\)
Cho a,b,c \(\in\) N. Chứng minh: \(\sqrt{a\left(b+1\right)}+\sqrt{b\left(c+1\right)}+\sqrt{c\left(a+1\right)}\le\dfrac{3}{2}.\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
Cho a.b \(\ge0\) và \(a^2+b^2=1\). Tìm GTNN của biểu thức:
A = \(\left(1+a\right)\left(1+\dfrac{1}{b}\right)+\left(1+b\right)\left(1+\dfrac{1}{a}\right)\)
cho ba số dương a,b,c .Chứng minh rằng \(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(a+c\right)}+\dfrac{1}{c^2\left(b+a\right)}\ge\dfrac{3}{2}\)
Chứng minh:
\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=1\) với \(a\ge0,a\ne1\)
cho a,b,c >0 .chứng minh
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}+\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Chứng minh các đẳng thức sau:
a) \(\left(1-a^2\right):\left(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right)+1=\frac{2}{1-a}\)
b) \(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)=\sqrt{b}-\sqrt{a}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}.\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)=\frac{\sqrt{a}}{a}\)