Ta có:
\(\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)
= \(\dfrac{x^2+2xy+y^2+x^2+xy}{\left(2x^3-2xy^2\right)+\left(x^2y-y^3\right)}\)
= \(\dfrac{\left(x+y\right)^2+x\left(x+y\right)}{2x\left(x^2-y^2\right)+y\left(x^2-y^2\right)}\)
= \(\dfrac{\left(x+y\right)\left(2x+y\right)}{\left(2x+y\right)\left(x^2-y^2\right)}\)
= \(\dfrac{x+y}{x^2-y^2}\)
= \(\dfrac{x+y}{\left(x+y\right)\left(x-y\right)}\)
= \(\dfrac{1}{x-y}\) (đpcm)