CM: S= 1+1/2^2+1/3^2+......+1/100^2 <2
Cho A = 1 + \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2^{100}-1}\)
CMR: A > 50
C/m rằng: \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\)
1. So sánh A và B
A= 20082007 +1/ 20082008 + 1
B= 20082007 + 1/ 20082008 +1
2. So sánh M và N
M= 100100 + 1/ 10099 +1
N= 100101 +1/ 100100+1
3. Cm:
B= 5^2008 +5^2007 +5^2006 chia hết cho 31.
C= 8^8 +2^20 chia hết cho 17.
D= 313^5 . 299- 313^6 . 36 chia hết cho 7
10 Rút gọn:
a) A= 1+2+22+23+24+...+249+250
b) B= \(\dfrac{1}{2}+(\dfrac{1}{2})^2+(\dfrac{1}{2})^3+(\dfrac{1}{2})^4+(\dfrac{1}{2})^5+...+(\dfrac{1}{2})^{99}+(\dfrac{1}{2})^{100}\)
Cho:
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2^{100}-1}\)
CMR: A > 50
Nhờ mấy bạn giải giùm mình nha ( Kết bạn với mình nếu ai giỏi runik )
Tính: \(\left[\dfrac{1}{100}-1^2\right].\left[\dfrac{1}{100}-\left(\dfrac{1}{2}\right)^2\right].\left[\dfrac{1}{100}-\left(\dfrac{1}{3}\right)^2\right]...\left[\dfrac{1}{100}-\left(\dfrac{1}{20}\right)^2\right]\)
CM: \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Cho M= 1-\(\frac{1}{2^2}\)-\(\frac{1}{3^2}\)-\(\frac{1}{4^2}\)-....-\(\frac{1}{100^2}\). CMR: M>\(\frac{1}{100}\)