có thật là của lp 7 ko ak
Bài làm
\(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\Rightarrow a^2.c+b^2.a+c^2.b\)
\(=b^2.c+c^2.a+a^2.b\)
\(\Leftrightarrow a^2.\left(c-b\right)+a.\left(b^2-c^2\right)+b.c.\left(c-d\right)=0\)
\(\Leftrightarrow a^2.\left(c-b\right)-a\left(c-b\right).\left(c+b\right)+b.c.\left(c-b\right)=0\)
\(\Leftrightarrow\left(c-b\right).\left(a^2-a.c-a.b+b.c\right)=0\)
\(\Leftrightarrow\left(c-b\right).a.\left(a-c\right)-b.\left(a-c\right)=0\)
\(\Leftrightarrow\left(c-d\right).\left(a-c\right).\left(a-b\right)=0\)
=> \(a=b\) hoặc b = c hoặc a = c (ĐPCM)