1.Cho a,b,c,d,e,f \(\ne\) 0 thoả mãn : \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}\)
Cmr:\(\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5=\dfrac{a}{f}\) với (a+b+c+d+e+f \(\ne\)0)
Câu 1:Thực hiện phép tính(tính một cách hợp lí nếu có thể):
a)\(\dfrac{1}{2}-\dfrac{-3}{6}=+\dfrac{5}{3}-\dfrac{9}{12}\)
b)\(\begin{matrix}&\left(\dfrac{-2}{3}\right)\end{matrix}.\dfrac{3}{11}+\left(\dfrac{-16}{9}\right):\dfrac{11}{3}\)
c)\(\begin{matrix}&\left(\dfrac{2}{3}\right)^0\end{matrix}-\sqrt{9+}\left(-\dfrac{^{ }1}{2}\right)^2\)
Tìm x biết:
a) \(\left(-\dfrac{2}{3}\right)^2.x=\left(-\dfrac{2}{3}\right)^5\) ; b) \(\left(-\dfrac{1}{3}\right)^3.x=\dfrac{1}{81}\) ; c) (2x-3)\(^2\) ; d) (3x-2)\(^5\) =-243
\(Cho\) : \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với a,b,c,d ≠ 0;c ≠ d,-d
Chứng minh rằng : \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
\(\left(\dfrac{1}{3}\right)^{50}.\left(-9\right)^{25}-\dfrac{2}{3}:4\)
Thành thật cám ơn cá bạn!❤
Cho \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{n-1}}{an}=\dfrac{an}{a1}\)
\(a_1+a_2+...+an-1+an\ne0\)
Tính \(\dfrac{a_1^2+a_2^2+...+an^2}{\left(a_1+a_2+...+a_n\right)}\)
Cho a ; b \(\ne\) 0 tm : \(\dfrac{ab+1}{b}=\dfrac{bc+1}{c}=\dfrac{ca+1}{a}\) . Cm : \(a^{2017}+\dfrac{1}{b^{2018}}=b^{2017}+\dfrac{1}{c^{2018}}=c^{2017}+\dfrac{1}{a^{2018}}\)
a, \(\dfrac{\left(-3\right)^x}{81}=-27\)
b, \(2^{x-1}=16\)
c, \(\left(x-1\right)^2=25\)
d, \(0,2-\left|4,2-2x\right|=0\)
e, \(1\dfrac{2}{3}:\dfrac{x}{4}=6:0,3\)
Cho a ; b ;c tm : \(\dfrac{a}{x}=\dfrac{b}{x+1}=\dfrac{c}{x+2}\) . CM : 4.(a-b).(b-c)= (a-c)2