choΔABC vuông tại B ,tia phân giác AD. Từ C vẽ 1 dường thẳng vuông góc với BC cắt tia AD tại E
c/m Chu vi ΔECD lớn hơn chu vi ΔBAD
cho tam giác abc vuông tại a.Đường phân giác bd(d thuộc ac).từ d kẻ dh vuông góc với bc tại h.Đường thẳng dh cắt đường thẳng ab tại k a)chứng minh ad=hd b)so sánh độ dài ad và dc c)chứng minh bd vuông góc với kc
Cho tam giác ABC vuông tại B. Trên cạnh BC lấy các điểm D và E (D nằm giữa B và E).
a) So sánh độ dài các đoạn thẳng AB, AD, AE, AC
b) Vẽ BI, BK, BH lần lượt vuông góc với AD, AE, AC. So sánh các góc ABH, ABK, ABI.
Cho tam giác ABC cân tại A(góc A <90 độ).Vẽ BH vuông góc với AC tại H, CK vuông góc với AB tại K.
a) Chứng minh rằng: AH=AK.
b) Gọi I là giao điểm của BH và CK.Chứng mnh rằng AI là tia phân giác của góc A.
c) Cho biết AB =10cm, AK=6cm.Tính CK,BC
Cho tam giác ABC vuông cân tại A , điểm D nằm giữa B và C ( AD không vuông góc với BC ) . Gọi E và F là hình chiếu của B và C trên AD a) So sánh BC với BE + CF b) Tam giác ABE = tam giác CAF c)BE mũ 2 + CF mũ 2 = AB mũ 2 d) gọi m là trung điểm của BC , chứng minh tam giác MBE = tam giác MAF e ) Tam giác MEF vuông cân
cho tam giác ABC vuông tại A có AB=AC.Qua A kẻ đường thẳng xy B,C nằm cùng phía với xy .Vẽ kẻ đường thẳng BD thuộc xy tại D .CE thuộc xy tại E . hãy chứng minh
a, tam giác BDA= tam giácAEC
b. DE =EC cộng BC
5>Cho tam giác ABC, điểm P nằm giữa A và C Gọi E,F là chân đường vuông góc từ A và C đến BD.CM AC>AE+CE
6>Cho tam giác ABC nhọn, vẽ AD vuông BC, BE vuông AC CM AD+BE