Đặt \(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)
Thế vào đề ta được
\(xy+4\ge2\left(x+y\right)\)
\(\Leftrightarrow xy-2x+4-2y\ge0\)
\(\Leftrightarrow\left(y-2\right)\left(x-2\right)\ge0\)
Chứng minh \(\left(y-2\right)\left(x-2\right)\ge0\)
Ta có : (Đây là phần mình chứng minh nha, có gì sai mong bạn chỉ bảo )
\(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)
Áp dụng bđt Cosi ta được :
\(\left\{{}\begin{matrix}x=a+b\ge2\sqrt{ab}\\y=c+d\ge2\sqrt{cd}\end{matrix}\right.\)
Mà ab=cd=1
Nên \(\left\{{}\begin{matrix}x=a+b\ge2\\y=c+d\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\y-2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\ge0\)
=> ĐPCM