Mọi người giúp mk giải mấy bài này
b1 cho a,b là hai số thực dương thõa: lớn hơn 1 và a+b≤4. Tìm giá trị nhỏ nhất của bt sau: A=\(\dfrac{a^4}{\left(b-1\right)^3}+\dfrac{b^4}{\left(a-1\right)^3}\)
b2 cho các số thực dương x,y,z. Tìm giá trị nhỏ nhất của bt sau
\(P=\dfrac{x}{\sqrt{z\left(x+y\right)}}+\dfrac{y}{\sqrt{x\left(y+z\right)}}+\dfrac{z}{\sqrt{y\left(z+x\right)}}\)
Cho x,y,z > 0 Tìm GTNN của
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-1\right)^2+\dfrac{12}{\left(x+y\right)\sqrt{x+y+1}}+\dfrac{12}{\left(y+z\right)\sqrt{y+z+1}}\)
Giúp với ạ !!!
Đề: Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y\le z\end{matrix}\right.\) tìm Min của \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\) Làm thế này không biết đúng ko
Ta có :A= \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)=3+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+\dfrac{z^2}{x^2}+\dfrac{x^2}{z^2}+\dfrac{z^2}{y^2}+\dfrac{y^2}{z^2}\)
=> A \(=3+\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\right)+\left(\dfrac{x^2}{z^2}+\dfrac{z^2}{16x^2}\right)+\left(\dfrac{y^2}{z^2}+\dfrac{z^2}{16y^2}\right)+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Áp dụng BĐT Cauchy ta có
\(A\ge3+2+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)=6+\dfrac{15}{16}\left(\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}\right)\)
Do \(x+y\le z\Rightarrow\dfrac{x}{z}+\dfrac{y}{z}\le1\) ; Đặt \(u=\dfrac{x}{z}\); \(v=\dfrac{y}{z}\)
\(\Rightarrow\dfrac{z^2}{x^2}+\dfrac{z^2}{y^2}=\dfrac{1}{u^2}+\dfrac{1}{v^2}\ge\dfrac{2}{uv}\ge\dfrac{2}{\dfrac{\left(u+v\right)^2}{4}}\ge\dfrac{2}{\dfrac{1}{4}}=8\)
\(\Rightarrow A\ge6+\dfrac{15}{16}.8=\dfrac{27}{2}\) Vậy minA = \(\dfrac{27}{2}\) khi \(x=y=\dfrac{z}{2}\)
Cho x;y;z;t thỏa mãn: \(xyzt=1\) Chứng minh rằng: \(\dfrac{1}{x^2\left(yz+zt+ty\right)}+\dfrac{1}{y^2\left(xz+zt+tx\right)}+\dfrac{1}{z^2\left(xy+xt+tz\right)}+\dfrac{1}{t^2\left(xy+yz+xz\right)}\ge\dfrac{4}{3}\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\x>max\left\{y,z\right\}\end{matrix}\right.\). Tìm Min của:
\(M=\dfrac{x}{y}+2\sqrt{1+\dfrac{y}{z}}+3\sqrt[3]{1+\dfrac{z}{x}}\)
chứng minh với x,y,z>0,xyz=1
\(\dfrac{1}{x^2\left(y+z\right)}+\dfrac{1}{y^2\left(z+x\right)}+\dfrac{1}{z^2\left(x+y\right)}\ge\dfrac{3}{2}\)
Các bạn giúp mình với
Câu 1: Cho a, b, c >0 và \(a\le b+c\) Tìm giá trị nhỏ nhất của
\(p=\frac{c}{\left(a+b\right)}+\left(b+c\right)\left(\frac{1}{b+2c}+\frac{1}{a+c}\right)\)
Câu 2: Cho x, y, z >0 Tìm giá trị nhỏ nhất
\(p=\frac{1}{3}\left(\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}\right)\left[\frac{xyz\left(x+y+z\right)}{x^2y^2+y^2z^2+z^2x^2}\right]^2\)
Câu 3: Cho \(x,y,z\in R\) và \(x^2+y^2+z^2=1\) Tìm giá trị lớn nhất của
\(P=\frac{x^2y^2}{1-xy}+\frac{z^2y^2}{1-zy}+\frac{x^2z^2}{1-xz}\)
Mọi người ơi giúp mình với
Câu 1: Cho x, y, z > 0 và \(5\left(x^2+y^2+z^2\right)=6\left(xy+yz+xz\right)\)Tìm giá trị nhỏ nhất của
\(P=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Câu 2: Cho a, b, c >0 và \(\left\{{}\begin{matrix}ab+bc+ca>0\\a\ge c\end{matrix}\right.\)Tìm giá trị nhỏ nhất của
\(p=\frac{\left(a+b\right)}{\left(b+c\right)}+\frac{\left(b+c\right)}{\left(c+a\right)}+\frac{\left(c+a\right)^2}{a\left(b+c\right)+c\left(b+a\right)}\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)