Tính: \(\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{zx+z+1}\) biết xyz =1
Cho biểu thức M = \(\dfrac{xy-3x-y+4}{xy-2x-2y+4}\)+\(\dfrac{yz-3y-z+4}{yz-2y-2z+4}\)+\(\dfrac{zx-3z-x+4}{zx-2z-2x+4}\)
Chứng minh giá trị biểu thức M luôn là 1 số nguyên với x khác 2 và y khác 2.
Cho x2+y2+z2=xy+yz+zx và x2017+y2017+z2017=9.Tính : \(\left(\dfrac{2017x+2018y-4023z}{3}\right)^{2017}\)
chứng minh rằng: (x-y)/(1+xy) + (y-z)/(1+yz) +(z-x)/(1+zx) = (x-y)(y-z)(z-x)/(1+xy)(1+yz)(1+zx)
Chứng minh đẳng thức sau:
a) \(\dfrac{x^2-y^2}{x^2-y^2+xz-yz}=\dfrac{x+y}{x+y+z}\)
b) \(\dfrac{x^2+y^2-z^2+2xy}{x^2+z^2-y^2-2xz}=\dfrac{x+y+z}{x-z-y}\)
c) \(\dfrac{x^3-3x^2-x+3}{x^2-3x}=\dfrac{x^2-1}{x}\)
d) \(\dfrac{4x^3-8x^2+3x-6}{12x^3+4x^2+9x+3}=\dfrac{x-2}{3x+1}\)
m.n jup mk vs mai nộp bài
Cho các số x, y, z khác 0 thỏa mãn \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=0\) và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=2\)
CMR: \(A=\dfrac{a}{bcx^2}+\dfrac{b}{acy^2}+\dfrac{c}{abz^2}\) không phụ thuộc vào x, y, z
a. Cho x,y,z là 3 số khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
Tính giá trị biểu thức A=\(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\)
b. Cho a,b,c là các số hữu tỉ khác nhau từng đôi một. Chứng minh rằng A=\(\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}\)
là bình phương của 1 số hữu tỉ
c. Tìm giá trị lớn nhất của biểu thức B=\(\dfrac{5x^2+4x-1}{x^2}\)
1)Thực hiện phép tính :
a) \(\dfrac{x^2-y^2}{x^3}+y^3.\left[\left(x-\dfrac{x^2+y^2}{y}\right):\left(\dfrac{1}{x}-\dfrac{1}{y}\right)\right]\)
2) CMR nếu \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
thì \(\dfrac{1}{x^5}+\dfrac{1}{y^5}+\dfrac{1}{z^5}=\dfrac{1}{x^5+y^5+z^5}\).
Nếu \(\dfrac{x-y}{z-y}=-10\) ( y khác z). Tính giá trị của biểu thức: \(\dfrac{x-z}{y-z}\)