Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
donaruma

cho x,y,z>0  x+y+z<=1

tìm GTNN:P= \(\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)

tthnew
8 tháng 8 2021 lúc 19:06

Sử dụng bất đẳng thức Minkovski, ta có:

\(P = \sqrt {{{\left( {x + y + z} \right)}^2} + {{\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)}^2}} \)

\( \ge \sqrt {\left[ {{{\left( {x + y + z} \right)}^2} + \frac{1}{{{{\left( {x + y + z} \right)}^2}}}} \right] + \frac{{80}}{{{{\left( {x + y + z} \right)}^2}}}} \)

\(\ge \sqrt{2+\dfrac{80}{1}} =\sqrt{82}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}.\)

Kết luận ...

missing you =
8 tháng 8 2021 lúc 19:09

\(\sqrt{x^2+\dfrac{1}{x^2}}=\dfrac{1}{\sqrt{82}}\sqrt{\left(1^2+9^2\right)\left(x^2+\dfrac{1}{x^2}\right)}\ge\dfrac{1}{\sqrt{82}}\left(x+\dfrac{9}{x}\right)\)

tương tự với \(\sqrt{y^2+\dfrac{1}{y^2}};\sqrt{z^2+\dfrac{1}{z^2}}\)

\(=>P\ge\dfrac{1}{\sqrt{81}}\left(x+\dfrac{9}{x}+y+\dfrac{9}{y}+z+\dfrac{9}{z}\right)\)

có \(x+\dfrac{9}{x}=x+\dfrac{1}{9x}+\dfrac{80}{9x}\ge2\sqrt{\dfrac{1}{9}}+\dfrac{80}{9x}\)

tương tự với \(y+\dfrac{9}{y};z+\dfrac{9}{z}\)

\(=>P\ge\dfrac{1}{\sqrt{82}}\left[2\sqrt{\dfrac{1}{9}}.3+\dfrac{\left(\sqrt{80}+\sqrt{80}+\sqrt{80}\right)^2}{9\left(x+y+z\right)}\right]=\dfrac{1}{\sqrt{82}}.82=\sqrt{82}\)

dấu"=" xảy ra<=>x=y=z=1/3

 


Các câu hỏi tương tự
Tường Nguyễn Thế
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
dia fic
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
ITACHY
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Vua Phá Lưới
Xem chi tiết
poppy Trang
Xem chi tiết