Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
Cho x,y,z > 0 và xyz=8. Tìm Min P = \(\Sigma\dfrac{x^2}{\sqrt{\left(1+x^3\right)+\left(1+y^3\right)}}\)
Cho x,y,z>0 và \(xy\sqrt{xy}+yz\sqrt{yz}+xz\sqrt{xz}=1\)
Tìm MinP= \(\Sigma\dfrac{x^6}{x^3+y^3}\)
Cho x,y,z>0 và \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1\).Tìm MinP = \(\Sigma\dfrac{x^3}{y\left(x+z\right)}\)
Cho x,y,z>0 . Tìm MinP = \(\Sigma\dfrac{x^2}{y^2+yz+z^2}\)
Cho x,y,z> 0. Tìm MinP = \(\Sigma\dfrac{x}{\sqrt{x^2+8yz}}\)
Cho \(\left\{{}\begin{matrix}x,y,z>0\\x+y+z=18\sqrt{2}\end{matrix}\right.\). Tìm Min A=\(\Sigma\dfrac{1}{\sqrt{x\left(y+z\right)}}\)
Cho x,y,z>0 và \(xy+yz+xz\ge3\)
Tìm MinP = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z>0 và \(xy\sqrt{xy}+yz\sqrt{yz}+xz\sqrt{xz}=3\). Tìm MinP = \(\Sigma\dfrac{x^5}{yz}\)
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)