\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)
\(=\dfrac{x^3+y^3+z^3-3xyz}{xyz}+\dfrac{3xyz}{xyz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{xyz}+3\)
\(=3\)
Vậy P = 3
\(P=\dfrac{x^2}{yz}+\dfrac{y^2}{zx}+\dfrac{z^2}{xy}=\dfrac{x^3+y^3+z^3}{xyz}\)
\(=\dfrac{x^3+y^3+z^3-3xyz}{xyz}+\dfrac{3xyz}{xyz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{xyz}+3\)
\(=3\)
Vậy P = 3
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) khác 0. Tính P = \(\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{zx}{y^2}\)
cho xyz bằng 1 tính: A=\(\dfrac{x}{xy+x+1}+\dfrac{y}{yz+y+1}+\dfrac{z}{zx+z+1}\)
1) cho a+b+c=0 va a^2+b^2+c^2=16 tính a^4+b^4+c^4
2) cho a+b+c=0 va a^2+b^2+c^2=1981 tính a^4+b^4+c^4
3) cho a+b+c=4 va a^2+b^2+c^2=16 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) tính xy + yz + zx
4) cho a+b+c=30 va a^2+b^2+c^2=300 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)tính xy + yz + zx
Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của bt \(M=\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
a) Rút gọn biểu thức:
\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}\)
b) Cho \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{2}=0\) (x,y,z \(\ne\)0)
Tính: \(\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}\)
\(Cho\) \(x,y,z>0\) thoả mãn \(x+y+z=2019.\)
Tìm giá trị nhỏ nhất của biểu thức : \(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\)
Cho \(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
và \(Q=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Chứng minh nếu P=1 thì Q=0
Cho \(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
và \(Q=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Chứng minh nếu P=1 thì Q=0
giúp mk mình cần gấp lắm
a,\(\dfrac{x^2+y^2-xy}{x^2-y^2}:\dfrac{x^3+y^3}{x^2+y^2-2xy}\)
b,\(\dfrac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\)
c,\(\dfrac{x^2-xy}{y}:\dfrac{x^2-xy}{xy+y}:\dfrac{x^2-1}{x^2+y}\)
d,\(\dfrac{x^2+y}{y}:\left(\dfrac{z}{x^2}:\dfrac{xy}{x^2y}\right)\)
e,\(\dfrac{x^2+1}{x}:\dfrac{x^2+1}{x-1}:\dfrac{x^3-1}{x^2+x}:\dfrac{x^2+2x+1}{x^2+x+1}\)
g,\(\left(\dfrac{z}{x^2}:\dfrac{xy}{x^2y}\right)\dfrac{x^2+y}{y}\)