Bài 2: Phương trình mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trần nam

Cho x,y,z thõa mãn : \(\left\{{}\begin{matrix}0\le x,y,z\le2\\x+y+z=3\end{matrix}\right.\)

Tìm giá trị lớn nhất , nhỏ nhất của \(P=x^2+y^2+z^2\)

Nguyen
7 tháng 3 2019 lúc 20:15

*Áp dụng BĐT Svarxơ, ta có:

P\(=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{3}=3\)

Vậy Pmin=3\(\Leftrightarrow\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\Rightarrow x=y=z=1\)

Nguyễn Việt Lâm
8 tháng 3 2019 lúc 16:24

Gọi mặt phẳng (Q) có pt \(x+y+z-3=0\)

Gọi \(M\left(a;b;c\right)\in\left(Q\right)\) sao cho \(0\le a;b;c\le2\)

\(\Rightarrow P=OM^2=a^2+b^2+c^2\)

Bài toán trở thành tìm \(M\in\left(Q\right)\) sao cho \(OM\) đạt GTLN và GTNN

- Phần GTNN thì đơn giản rồi, gọi H là hình chiếu vuông góc của O lên (Q) \(\Rightarrow OH\perp HM\Rightarrow\) tam giác OHM vuông tại H \(\Rightarrow OH\le OM\) (trong tam giác vuông cạnh huyền luôn lớn hơn hoặc bằng cạnh góc vuông)

\(\Rightarrow OM_{min}=OH\) khi \(M\) trùng H (dễ dàng tìm ra \(H\left(1;1;1\right)\) có tọa độ thỏa mãn \(0\le a;b;c\le2\))

\(\Rightarrow OM_{min}=OH=d\left(O;\left(Q\right)\right)=\frac{\left|1.0+1.0+1.0-3\right|}{\sqrt{1+1+1}}=\sqrt{3}\Rightarrow P_{min}=OM_{min}^2=3\)

- Phần GTLN hơi phức tạp chút, có lẽ do mình ko tìm ra cách giải tốt nhất

Ta thấy M luôn nằm trong hình lập phương giới hạn bởi các mặt phẳng \(x=2;y=2;z=2\)\(xOy;yOz;xOz\)

\(\Rightarrow M\) thuộc hình phẳng là tiết diện của \(\left(Q\right)\) với hình lập phương nói trên

\(\Rightarrow M\) thuộc hình lục giác đều có tọa độ lần lượt A(1;0;2); B(0;1;2); C(0;2;1); D(1;2;0); E(2;1;0); F(2;0;1) với tâm là \(H\left(1;1;1\right)\)

\(OM^2=OH^2+HM^2\Rightarrow OM_{max}\) khi \(HM_{max}\)

\(HM\le HA=HB=HC=HD=HE=HF\)

\(\Rightarrow OM_{max}\) khi \(M\) trùng A (hoặc B, C, D, E, F)

\(\Rightarrow OM_{max}^2=OH^2+HA^2=3+\left(1-1\right)^2+\left(0-1\right)^2+\left(2-1\right)^2=5\)

\(\Rightarrow P_{max}=OM_{max}^2=5\)

Khi \(\left(x;y;z\right)=\left(1;0;2\right)\) và các hoán vị


Các câu hỏi tương tự
Thái Thùy Linh
Xem chi tiết
Hùng
Xem chi tiết
Phan thu trang
Xem chi tiết
Phan thu trang
Xem chi tiết
Anh Dong
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Văn Phụng
Xem chi tiết
Vũ Thị Nhung
Xem chi tiết
An Sơ Hạ
Xem chi tiết