http://olm.vn/hoi-dap/question/731102.html
http://olm.vn/hoi-dap/question/731102.html
cho 3 số dương x,y,z thỏa mãn : \(x+y+z=xyz\)
CMR : \(\frac{x}{1+x^2}+\frac{2y}{1+y^2}+\frac{3z}{1+z^2}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Cho \(x+y+z=1\) Chứng minh \(x^3+y^3+z^3-3xyz=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)
Cho x,y,z là số thực dương thoả mãn \(x+y+z=1\) . Tìm GTNN của biểu thức:
\(P=\frac{x^2}{\left(y+z\right)^2+5yz}+\frac{y^2}{\left(z+x\right)^2+5xz}-\frac{3}{4}\left(x+y\right)^2\)
chứng minh nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-zx}{y\left(1-xz\right)}\).Với \(x\ne y,xyz\ne0,yz\ne1,xz\ne1\) thì xy+xz+yz=xyz(x+y+z)
a) Cho \(x,y,z\ne0\) và \(x-y-z=0\) . Tính \(K=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\) Chứng minh \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Cho x,y,z khác 0 và \(\frac{x-y-z}{x}=\frac{y-x-z}{y}=\frac{z-x-y}{z}\).Tính :
\(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\)
Cộng các phân thức đại số :
\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
Gọi m là số nhỏ nhất trong 3 số \(\left(x-y\right)^2,\left(y-z\right)^2,\left(z-x\right)^2\)
Chứng minh rằng: \(m\le\frac{x^2+y^2+z^2}{2}\)
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-x\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)
Giup nha