Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dbrby

cho x,y,z là 3 số thực dương có tổng bằng 10. Tìm GTLN của \(P=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)

Nguyễn Việt Lâm
19 tháng 3 2019 lúc 12:41

Đầu tiên, có vẻ bạn chép nhầm đề, chắc chắn P không có giá trị lớn nhất (bạn chỉ cần cho 1 số giá trị cực nhỏ, 2 số kia lớn hơn 1 thì P sẽ vô cùng lớn, ví dụ, với \(z=0.00000001\)\(x=y=\frac{10-z}{2}\) bấm máy tính thử sẽ thấy).

Cho nên, mình nghĩ đề đúng là tìm GTNN,:

Do lớp 8 có vẻ chưa học Cauchy nên ta chứng minh 1 BĐT phụ trước:

Với các số thực dương \(a;b\) ta luôn có \(\frac{a}{b}+\frac{b}{a}\ge2\)

Thật vậy, biến đổi tương đương BĐT trên:

\(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b\)

Áp dụng vào bài toán, ta có:

\(\frac{xy}{z}+\frac{yz}{x}=y\left(\frac{x}{z}+\frac{z}{x}\right)\ge2y\)

\(\frac{xy}{z}+\frac{xz}{y}=x\left(\frac{y}{z}+\frac{z}{y}\right)\ge2x\)

\(\frac{yz}{x}+\frac{xz}{y}=z\left(\frac{y}{x}+\frac{x}{y}\right)\ge2z\)

Cộng vế với vế:

\(2P\ge2\left(x+y+z\right)=20\Rightarrow P\ge10\)

Vậy \(P_{min}=10\) khi \(x=y=z=\frac{10}{3}\)


Các câu hỏi tương tự
Wanna One
Xem chi tiết
Hạ Vy
Xem chi tiết
Lunox Butterfly Seraphim
Xem chi tiết
Big City Boy
Xem chi tiết
dbrby
Xem chi tiết
Matsumi
Xem chi tiết
Online Math
Xem chi tiết
Lê Trường Lân
Xem chi tiết
mr. killer
Xem chi tiết