Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạ Vy

Cho x,y,z là 3 số thực dương có tổng bằng 10

Tìm giá trị nhỏ nhất của biểu thức P=\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)

Trần Quốc Khanh
14 tháng 2 2020 lúc 19:55

Áp dụng Cosi với x,y,z>0 có

\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{y^2}=2y\left(1\right)\)

\(\frac{yz}{x}+\frac{zx}{y}\ge2\sqrt{z^2}=2z\left(2\right)\)

\(\frac{zx}{y}+\frac{xy}{z}\ge2\sqrt{x^2}=2x\left(3\right)\)

Cộng (1),(2) và (3) có : \(2P\ge2\left(x+y+z\right)\Leftrightarrow P\ge x+y+z=10\)

Vậy Min P là 10, khi x=y=z

Khách vãng lai đã xóa