Cho ba số x, y, z thỏa mãn x+ y+z=1.Tìm giá trị nhỏ nhất của biểu thức A= x^2+ y^2+z^2
Những bài như thế này có phương hướng làm ntn ạ. Dayj em với.
cho x;y;z > 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\)
Tìm giá trị lớn nhất của \(P=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
Cho x, y, z nguyên dương thỏa mãn:
xyz = 9 + x + y + z
Cho ba số thực dương x, y, z thỏa mãn x+y+z+2=xyz . Chứng minh rằng:
x+y+z+6\(\ge\)2(\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\))
Cho x, y, z là các số nguyên dương thỏa mãn z≥60, x+y+z=100. Tìm GTLN của A = xyz
Cho các số dương x, y, z thỏa mãn xyz= \(\frac{1}{64}\). Chứng minh rằng:
(x+y)(y+z)(z+x)≥\(\frac{1}{8}\)
Cho 0 < x, y, z < 1 thỏa mãn xyz = (1 - x)(1 - y)(1 - z). Chứng minh rằng : trong ba số x(1 - y), y(1 - z), z(1 - x) có ít nhất một số không nhỏ hơn \(\frac{1}{4}\).
Cho x,y,z là các số dương thỏa mãn điều kiện:
x2015+y2015+z2015=3
Tìm giá trị lớn nhất của x2+y2+z2
Cho các số x, y, z dương thỏa mãn x^2 + y^2 + z^2 = 1 Tìm giá trị nhỏ nhất của biểu thức M = 1/16x^2 + 1/4y^2 + 1/z^2