\(P^2=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+\dfrac{2xy}{\sqrt{yz}}+\dfrac{2yz}{\sqrt{zx}}+\dfrac{2zx}{\sqrt{xy}}\)
\(P^2=\left(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\right)+\left(\dfrac{y^2}{z}+\dfrac{yz}{\sqrt{zx}}+\dfrac{yz}{\sqrt{zx}}+x\right)+\left(\dfrac{z^2}{x}+\dfrac{zx}{\sqrt{xy}}+\dfrac{zx}{\sqrt{xy}}+y\right)-\left(x+y+z\right)\)
\(P^2\ge4\sqrt[4]{\dfrac{x^4y^2z}{y^2z}}+4\sqrt[4]{\dfrac{y^4z^2x}{z^2x}}+4\sqrt[4]{\dfrac{z^4x^2y}{x^2y}}-\left(x+y+z\right)=3\left(x+y+z\right)\ge36\)
\(\Rightarrow P\ge6\)
\(P_{min}=6\) khi \(x=y=z=4\)