cho x,y,z > 0 thỏa mãn xyz = 1. Tìm GTNN của \(A=\frac{1}{x+y+z}-\frac{2}{xy+yz+xz}\)
cho x,y,z>0 thỏa mãn: xyz=1. Tìm GTNN:
\(S=\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{xz}\)
cho x,y,z>0 thỏa mãn x+y+z=1. Cmr:
\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}\ge14\)
CHO x,y,z >0 ,xyz=\(\frac{1}{2}\)
CMR:\(\frac{yz}{x^2\left(y+z\right)}\)+\(\frac{zx}{y^2\left(z+x\right)}\)+\(\frac{xy}{z^2\left(x+y\right)}\) ≥ xy+yz+zx
cho x,y,z>0 thỏa mãn \(x^2+y^2+z^2=3\) Cmr:
\(\frac{x}{3-yz}+\frac{y}{3-xz}+\frac{z}{3-xy}\le\frac{3}{2}\)
cho x,y,z>0 thỏa mãn x+y+z=3. Cmr:
\(\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+x^2+z^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\ge4xyz\)
Cho x, y, z >0 thoả mãn x+y+z=1. Cmr: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
cho x,y,z,t thỏa mãn xyzt=1. Cmr:
\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+xt\right)}+\frac{1}{z^3\left(xt+yt+yz\right)}+\frac{1}{t^3\left(xy+yz+xz\right)}\ge\frac{3}{4}\)
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)