cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm giá trị lớn nhất của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
1, Tìm giá trị lớn nhất của biểu thức : \(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
2, Tìm tất cả các cặp số nguyên (x;y) thỏa mãn : \(2x^2+y^2+4x=4+2xy\)
3, Cho x,y,z >0 . Chứng minh : \(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)
Cho các số x,y,z >0 thỏa mãn x+y+z = 12. Tìm GTLN của biểu thức: \(A=\sqrt{4x+2\sqrt{x}+1}+\sqrt{4y+2\sqrt{y}+1}+\sqrt{4z+2\sqrt{z}+1}\)
tìm giá trị lớn nhất của biểu thức
A=\(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\) với x≥1, y≥2 ,z≥3
Cho x,y,z là các số thực dương thoả mãn: x+y+z\(\le\)1
Tìm giá trị nhỏ nhất của \(A=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)
Cho x,y,z > 0 và xy + yz + zx = 1
Tính giá trị biểu thức: \(P=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho x,y,z>0 thỏa mãn \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{matrix}\right.\)
Tính P=\(\sqrt{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)