Cho x,y∈Q. Chứng minh B=\(\dfrac{3\left(x^2+1\right)+x^2y^2+y^2-2}{x^2+5+y^2+2xy}\)là số dương
1. Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2.\)
Chứng minh: a=b=c.
2. Chứng minh rằng:
a, A= x4 - 4x3 - 2x2 +12x +9 là số chính phương \(\forall\)x,y,z \(\in Z\).
b, B = 4x(x+y)(x+y+z)(x+z) + y2z2 là số chính phương với \(\forall\)x,y,z\(\in N\).
giúp mk mình cần gấp lắm
a,\(\dfrac{x^2+y^2-xy}{x^2-y^2}:\dfrac{x^3+y^3}{x^2+y^2-2xy}\)
b,\(\dfrac{x^3y+xy^3}{x^4y}:\left(x^2+y^2\right)\)
c,\(\dfrac{x^2-xy}{y}:\dfrac{x^2-xy}{xy+y}:\dfrac{x^2-1}{x^2+y}\)
d,\(\dfrac{x^2+y}{y}:\left(\dfrac{z}{x^2}:\dfrac{xy}{x^2y}\right)\)
e,\(\dfrac{x^2+1}{x}:\dfrac{x^2+1}{x-1}:\dfrac{x^3-1}{x^2+x}:\dfrac{x^2+2x+1}{x^2+x+1}\)
g,\(\left(\dfrac{z}{x^2}:\dfrac{xy}{x^2y}\right)\dfrac{x^2+y}{y}\)
Rút gọn và tìm điều kiện xác định
\(\left[\dfrac{2\left(x+y\right)}{\sqrt{x}^3-2\sqrt{2y^3}}-\dfrac{\sqrt{x}}{x+\sqrt{2xy}+2y}\right].\left[\dfrac{x\sqrt{x}+2\sqrt{2y^3}}{2y+\sqrt{2xy}}-\sqrt{x}\right]\)
Cmr
a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
b)\(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)
c) \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
d) \(\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Cho \(x+y=1\). Tính :
a) \(A=x^4-xy^3+yx^3-y^4+y^3-x^3-2\)
b) \(B=3x+3y+2x^2y+2xy^2-2xy+5x^3y^2+5x^2y^3-5x^2y^2+3\)
c) \(C=3xy\left(x+y\right)+2x^3y+2x^2y^2-2x^2y+\sqrt{16}-3xy\)
Cho hai số thực x,y thỏa mãn Đk x+y=1 và \(xy\ne0\)
Chứng minh \(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}=0\)
Rút gọn \(\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}:\dfrac{1}{2x^2+y+2}\)
Chứng minh các đẳng thức sau:
a) \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x+y\right)^2-\left(x-y\right)^2\)
b) \(\left(x+y\right)^3=x.\left(x-3y\right)^2+y.\left(y-3x\right)^2\)