Lời giải:
Từ điều kiện đề bài suy ra:
\(\left\{\begin{matrix} x^{2016}+y^{2016}-x^{2017}-y^{2017}=0\\ x^{2017}+y^{2017}-x^{2018}-y^{2018}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x^{2016}(1-x)+y^{2016}(1-y)=0\\ x^{2017}(1-x)+y^{2017}(1-y)=0\end{matrix}\right.\)
\(\Rightarrow x^{2016}(1-x)(1-x)+y^{2016}(1-y)(1-y)=0\) (trử theo vế)
\(\Leftrightarrow x^{2016}(1-x)^2+y^{2016}(1-y)^2=0\)
Dễ thấy \(x^{2016}(1-x)^2; y^{2016}(1-y)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\(x^{2016}(1-x)^2=y^{2016}(1-y)^2=0\)
\(\Rightarrow (x,y)=(0,1), (0,0), (1,1)\) và hoán vị của nó
Thử lại vào đk ban đầu thấy thỏa mãn
Do đó: \(A=x^{2019}+y^{2019}\in\left\{0; 1;2\right\}\)
Vì \(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\left(x,y\ge0\right)\)
\(\Rightarrow x=y=1\)
\(\Rightarrow A=1^{2019}+1^{2019}\)
\(\Rightarrow A=2\)
{x2016+y2016−x2017−y2017=0x2017+y2017−x2018−y2018=0{x2016+y2016−x2017−y2017=0x2017+y2017−x2018−y2018=0
⇔{x2016(1−x)+y2016(1−y)=0x2017(1−x)+y2017(1−y)=0⇔{x2016(1−x)+y2016(1−y)=0x2017(1−x)+y2017(1−y)=0
⇒x2016(1−x)(1−x)+y2016(1−y)(1−y)=0⇒x2016(1−x)(1−x)+y2016(1−y)(1−y)=0 (trử theo vế)
⇔x2016(1−x)2+y2016(1−y)2=0⇔x2016(1−x)2+y2016(1−y)2=0
Dễ thấy x2016(1−x)2;y2016(1−y)2≥0x2016(1−x)2;y2016(1−y)2≥0 nên để tổng của chúng bằng 00 thì:
x2016(1−x)2=y2016(1−y)2=0x2016(1−x)2=y2016(1−y)2=0
⇒(x,y)=(0,1),(0,0),(1,1)⇒(x,y)=(0,1),(0,0),(1,1) và hoán vị của nó
Do đó: A=x2019+y2019∈{0;1;2}