Chỉ có biến đổi tương đương:
\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\le\frac{2}{1+xy}\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\le2\left(1+x^2\right)\left(1+y^2\right)\)
\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy\le2+2x^2+2y^2+2x^2y^2\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2-2xy+y^2\right)\le0\)
\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\le0\) (luôn đúng với mọi \(xy\le1\))
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y\\xy=1\end{matrix}\right.\)
b/ Tính chất của z ở câu b là gì bạn? z bất kì là ko được đâu, hơn nữa mẫu số của vế phải thấy hơi kì quặc
a)Bổ Đề còn đc vt dưới dạng \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\) với \(x,y\ge0;xy\le1\).
Dấu ''='' xảy ra khi và chỉ khi \(xy=1\) hoặc \(x=y\ge0\)
Ta có
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\le\frac{2}{1+xy}\Leftrightarrow\frac{x^2+y^2+2}{x^2y^2+x^2+y^2+1}\le\frac{2}{1+xy}\)
\(\Leftrightarrow xy\left(x^2+y^2\right)+2xy+x^2+y^2+2\le2x^2y^2+2\left(x^2+y^2\right)+2\)
\(\Leftrightarrow xy\left(x^2+y^2-2xy\right)-\left(x^2+y^2-2xy\right)\le0\)
\(\Leftrightarrow\left(x-y\right)^2\left(xy-1\right)\le0\)(*)
BĐT (*) đúng \(x,y\ge0;xy\le1\Rightarrow\) Bổ đề được chúng minh
Đẳng thức xảy ra khi \(xy=1\) hoặc \(x=y\ge0\)