Ta có:
\(\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)
+/ Áp dụng bất đẳng thức Cauchy ta có: \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge2\left(x,y\ne0\right)\)
+/ Ta có:
\(\left(x^2-y^2\right)^2\ge0\forall x,y\)
\(\Rightarrow x^4-2x^2y^2+y^4\ge0\)
\(\Rightarrow x^4+y^4\ge2x^2y^2\)
\(\Rightarrow x^4+2x^2y^2+y^4\ge4x^2y^2\)
\(\Rightarrow(x^2+y^2)^2\ge4x^2y^2\)
Do đó:
\(\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}\ge\dfrac{4x^2y^2}{4x^2y^2}=1\)
Khi đó:
\(\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\ge1+2=3\left(đpcm\right)\)