Cho x,y,z là các số thực thỏa mãn \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
Tính giá trị của biểu thức A =\(2016.x+y^{2017}+z^{2017}\)
Câu 1:
Giá trị nhỏ nhất của biểu thức C là \(\frac{1}{3}\left(x-\frac{2}{5}\right)^2\) + |2y+1| - 2,5
Câu 2:
Cho 2 số x,y thỏa mãn (2x +1)2 + |y-1,2| = 0. Giá trị x,y?
Câu 3:
Giá trị x = __ thì biểu thức D = \(\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2\) - |8x -1| + 2016 đạt giá trị lớn nhất?
Câu 4:
Các số tự nhiên n thỏa mãn \(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
Cách giải luôn nhé!
Cho các số x, y thỏa mãn /2x-1/ +(y-2) mũ 2022 <=0. Tính giá trị của biểu thức B = 12x2 + 4xy2
chohai số nguyên x,y thỏa mãn 5x^2+5y^2+8xy-2x+2y+2=0 .Tính giá trị của biểu thức M=(x+y)x^2015+(x-2)^2016+(y+1)^2017
Cho a,b,c là các số dương . Tìm giá trị nhỏ nhất của biểu thức
P = ( a + b + c ) ( \(\dfrac{1}{a}\)+ \(\dfrac{1}{b}\)+ \(\dfrac{1}{c}\))
Cho 3 số x,y,z khác 0 thoả mãn điều kiện \(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\)
Hãy tính giá trị của biểu thức :
\(B=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)
Cho biểu thức M = \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) với x,y,z,t là các số tự nhiên khác 0 . Chứng minh \(M^{10}< 1025\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
Hãy tìm một đơn thức với các biến là x,y thỏa mãn các điều kiện sau: - số mũ của x và y tỉ lệ với 2 và 3/2 - số mũ của x lớn hơn số mũ của y là 1 - giá trị của đơn thức tại x=2, y=-3 bằng 1296
cho x, y, z thỏa mãn biểu thức( x - 1 )^2018 + (y - 2 )^2020+(z-3)^2022=0 Tính giá trị biểu thức sau: A=1/9(-x)^2021y^2z^3 Làm ơn giúp mình với mình đang vội