Cho 3 số thực dương x,y,z thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\).Tìm GTLN của biểu thức
\(P=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)
Cho x, y, z là các số thoả mãn:
\(\left\{{}\begin{matrix}\dfrac{x}{3}+\dfrac{y}{12}-\dfrac{z}{4}=1\\\dfrac{x}{10}+\dfrac{y}{5}+\dfrac{z}{3}=1\end{matrix}\right.\)
Tính \(M=x^{10}+y^{100}+z^{1000}\)
Cho x, y, z > 0 thoả mãn x+y+z=2. Tìm GTNN của các biểu thức:
a) \(A=\sqrt{x^2+\dfrac{1}{x^2}}+\sqrt{y^2+\dfrac{1}{y^2}}+\sqrt{z^2+\dfrac{1}{z^2}}\)
b) \(B=\sqrt{x^2+\dfrac{1}{y^2}+\dfrac{1}{z^2}}+\sqrt{y^2+\dfrac{1}{z^2}+\dfrac{1}{x^2}}+\sqrt{z^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}}\)
c) \(C=\sqrt{2x^2+\dfrac{3}{y^2}+\dfrac{4}{z}}+\sqrt{2y^2+\dfrac{3}{z^2}+\dfrac{4}{x^2}}+\sqrt{2z^2+\dfrac{3}{x^2}+\dfrac{4}{y^2}}\)
Cho x, y là các số dương tm \(\dfrac{1}{x}+\dfrac{4}{y}=1\)
Tìm GTNN của P= x + y
a) Cho x, y \(\ge\)0 thỏa mãn \(x^2+y^2\le2\). Tìm Min của \(M=\dfrac{1}{1+x}+\dfrac{1}{1+y}\)
b) Cho x, y, z > 0 thỏa mãn x + y + z = 4. Chứng minh rằng: \(\dfrac{1}{xy}+\dfrac{1}{yz}\ge1\)
Cho x,y > 0 thỏa mãn xy=1
Tìm GTLN \(A=\dfrac{x}{x^4+y^2}+\dfrac{y}{y^4+x^2}\)
cho x,y,z >0 thoả mãn \(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)=8\)
tìm Max: \(P=\dfrac{x^2+y^2+z^2+14xyz}{4\left(x+y+z\right)+15xyz}\)
1. tìm m để nghiệm của hệ \(|^{\dfrac{x+1}{3}-\dfrac{y+2}{4}=\dfrac{1\left(x-y\right)}{5}}_{\dfrac{x-3}{4}-\dfrac{y-3}{3}=2y-x}\) cũng là nghiệm của PT
3mx-5y=2m+1
1. Tìm các số x, y, z:
\(x^2+y^3=z^4\)
2. Tìm \(\left(x;y\right);x\in N;y\in N\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{p}\) ( p là số nguyên tố )