Câu a :Ta có :
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
Thay \(x+y=1\) và \(xy=-1\) vào biểu thức ta có :
\(1^3-3.\left(-1\right).1=4\)
Câu a :Ta có :
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
Thay \(x+y=1\) và \(xy=-1\) vào biểu thức ta có :
\(1^3-3.\left(-1\right).1=4\)
cho a,b,c thỏa mãn a2+b2+c2=4;a3+b3+c3=8
tính a4+b4+c4
cho a,b > 0thỏa mãn a + b = a2 + b2 = a3 + b3
tính a2015 + b2015
Cho x, y, z là các số thực khác 0 thỏa mãn:
\(x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{x}+\dfrac{1}{z}\right)+z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\) và x3 + y3 + z3 =1
Tính giá trị của biểu thức P= \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
Cho a+b=1 . Tính giá trị của biểu thức sau :
M= a^3 + b^3 + 3ab ( a^2+b^2 ) + 6a^2 b^2 ( a+b)
Bài 1: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau:
a) A= a4-2a3+3a2-4a+5
b) B= \(\dfrac{x^2+4x-6}{3}\)
c) C= \(\dfrac{4+5\left|1-2x\right|}{7}\)
Bài 2:
a) Tìm a sao cho x4-x3+6x2-x+a chia hết cho đa thức x2-x+5.
b) Xác định hằng số a và b sao cho x4+ax2+b chia hết cho x2-x+1
Bài 3: Tính giá trị của biểu thức: A= x17-12x14+...-12x12+12x-1 với x=11
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
Cho A = \(\left(\dfrac{2x}{x-2}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\dfrac{6}{x+2}\)
a) Rút gọn biểu thức A
b) Tính giá trị của A biết: \(\left|2x-1\right|=3\)
c) Tìm x để A > 0
d) Tìm x để \(B=\dfrac{2}{x+1}\)