Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Luyri Vũ

Cho x,y> 0 và x+y=1 . Tìm MinP = \(\dfrac{1}{x^3+y^3}+\dfrac{1}{xy}\)

missing you =
9 tháng 7 2021 lúc 12:28

\(P=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy}=\dfrac{1}{x^3+3x^2y+3xy^2+y^3-3xy\left(x+y\right)}+\dfrac{3}{3xy}\)

\(=\dfrac{1}{\left(x+y\right)^3-3xy}+\dfrac{3}{3xy}\)\(=\dfrac{1}{1-3xy}+\dfrac{3}{3xy}\)

áp dụng BDT Cauchy Scharwarz

\(=>P\ge\)\(\dfrac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{3}\)

 

Nguyễn Việt Lâm
9 tháng 7 2021 lúc 15:54

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x+y=1\\x^3+y^3=\sqrt{3}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=\dfrac{3-\sqrt{3}}{6}\end{matrix}\right.\)

Giải hệ S, P này em sẽ tìm được điểm rơi của bài toán


Các câu hỏi tương tự
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết
Đức Anh Lê
Xem chi tiết
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết
Luyri Vũ
Xem chi tiết