Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Đức Anh

Cho x,y >0. Rút gọn A=\(\sqrt{2\left(\sqrt{x^2+y^2}+x\right)\left(\sqrt{x^2+y^2}+y\right)}-\sqrt{x^2+y^2}-x-y+2020\)

Nguyễn Việt Lâm
22 tháng 12 2020 lúc 20:17

\(A=\sqrt{2\left(x^2+y^2+\left(x+y\right)\sqrt{x^2+y^2}+xy\right)}-\sqrt{x^2+y^2}-x-y+2020\)

\(=\sqrt{\left(x^2+y^2+2xy\right)+x^2+y^2+2\left(x+y\right)\sqrt{x^2+y^2}}-\sqrt{x^2+y^2}-x-y+2020\)

\(=\sqrt{\left(x+y\right)^2+2\left(x+y\right)\sqrt{x^2+y^2}+x^2+y^2}-\sqrt{x^2+y^2}-x-y+2020\)

\(=\sqrt{\left(x+y+\sqrt{x^2+y^2}\right)^2}-\sqrt{x^2+y^2}-x-y+2020\)

\(=x+y+\sqrt{x^2+y^2}-\sqrt{x^2+y^2}-x-y+2020\)

\(=2020\)


Các câu hỏi tương tự
Tuyết Linh Linh
Xem chi tiết
Mỹ Lệ
Xem chi tiết
Big City Boy
Xem chi tiết
dbrby
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Võ Đình Bình
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
em ơi
Xem chi tiết