Lời giải:
Với \(x\in (\frac{\pi}{2}; \pi)\Rightarrow \cos x< 0(1)\)
\(\sin ^2x+\cos ^2x=1\Rightarrow \cos ^2x=1-\sin ^2x=1-(\frac{1}{3})^2=\frac{8}{9}(2)\)
Từ \((1);(2)\Rightarrow \cos x=\frac{-2\sqrt{2}}{3}\)
Do đó: \(\sin x+\cos x+1=\frac{1}{3}-\frac{2\sqrt{2}}{3}+1=\frac{4-2\sqrt{2}}{3}\)