Cho biểu thức A=\(\left(\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\):\(\frac{2\left(x-2\sqrt{x}+1\right)}{x-1}\)
a, tìm điều kiện xác định và rút gọn biểu thức A.
b, Tìm các giá trị của x để A<0.
c, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.
\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}\) \(-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) \(-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) \(\left(x\ge0,x\ne4,x\ne9\right)\)
a\()\) Rút gọn biểu thức trên
b\()\) Tìm giá trị nguyên của x để M nhận giá trị nguyên
Cho biểu thức: \(A=\sqrt{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}\) , với x ≥ 1.
a) Tính giá trị biểu thức A khi x = 5.
b) Rút gon biểu thức A khi 1 ≤ x ≤ 2
Bài 1 : Rút gọn biểu thức
a, A=\(\sqrt{24+16\sqrt{2}}-\sqrt{24-16\sqrt{2}}\)
b, B=(\(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\))2
c, C=\(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\) với 1 < a < 2
d, D=\(\sqrt{\left(7+4\sqrt{3}\right)\left(a-1\right)^2}\)
e, T=(\(\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}\))(\(\sqrt{63}+1\))
Bài 2: Tìm điều kiện xác định của các biểu thức sau
a,\(\sqrt{-3x+2}\)
b,\(\frac{1}{\sqrt{x}-1}\)
c,\(\frac{-2}{\sqrt{x^2+6}}\)
d,\(\sqrt{\frac{1}{x^2+x-2}}\)
Bài 3:Cho biểu thức: P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)
a, rút gọn P
b, Tìm x để P<\(\frac{1}{2}\)
B1 Cho biểu thức A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{x-3}{x+2\sqrt{x}+4}-\frac{\sqrt{x}+7}{x\sqrt{x}-8}\right):\left(\frac{\sqrt{x}+7}{x+2\sqrt{x}+4}\right)\)
1, Rút gọn A. Tìm x sao cho A<2
2, Cho 1≤a,b,c≤2. Chứng minh rằng \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)
C1: Cho M=( 1- \(\frac{4\sqrt{x}}{x-1}\) + \(\frac{1}{\sqrt{x-1}}\) ) : \(\frac{x-2\sqrt{x}}{x-1}\)
a, rút gọn M
b, tìm x để M = \(\frac{1}{2}\)
C2: giải phương trình
a, \(\sqrt{49x-98}-14\sqrt{\frac{x-2}{49}}=3\sqrt{x-2}+8\)
b, \(\sqrt{x+1}-\sqrt{x-2}=1\)
c, \(\sqrt{x^2+1}+\sqrt{4x^2-4x+5}=0\)
Cho x, y, z là các số dương và xyz = 4 Tính giá trị biểu thức :
\(P=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+2}+\dfrac{2\sqrt{z}}{\sqrt{xz}+2\sqrt{z}+2}\)
Tính B = \(\frac{1+xy}{x+y}-\frac{1-xy}{x-y}vớix=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2+\sqrt{2}}}}y=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
\(A=\frac{8}{4+2\sqrt{x}}-\frac{2-\sqrt{x}}{4-x}\)
\(B=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}-x\)