\(\sqrt{1+8x^3}=\sqrt{\left(1+2x\right)\left(1-2x+4x^2\right)}\le\dfrac{1+2x+1-2x+4x^2}{2}=\dfrac{2+4x^2}{2}=1+2x^2\)
(AM-GM)
CMTT và áp dụng Cauchy-Schwarz:
\(P\ge\dfrac{9}{\sqrt{1+8x^3}+\sqrt{1+8y^3}+\sqrt{1+8z^3}}\)
\(\ge\dfrac{9}{1+2x^2+1+2y^2+1+2z^2}=\dfrac{9}{3+2\left(x^2+y^2+z^2\right)}=\dfrac{9}{3+2.3}=1\)
\("="\Leftrightarrow x=y=z=1\)