gpt : a) \(\frac{5x}{\sqrt{4-x^2}}+\frac{8}{x^2}+\frac{2x}{4-x^2}+\frac{5\sqrt{4-x^2}}{x}+4=0\)
b) \(\frac{2x}{\sqrt{8x^2+25}}+\frac{125}{x^2}-14=0\)
c) \(\left(x^3-3x+2\right)\sqrt{3x-2}-2x^3+6x^2-4x=0\)
d) \(\sqrt{x^2-x+6}+\frac{4}{x-1}=x^2+x\)
Giai phuong trinh
1/ \(\sqrt{x^2+4x+5}+\sqrt{x^2-6x+13}=3\)
2/ \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=6x-x^2-5\)
3/ \(\sqrt{2x^2-4x+27}+\sqrt{3x^2-6x+12}=4x^2+8x+4\)
4/ \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
5/ \(\left(x+2\right)\left(x+3\right)-\sqrt{x^2+5x+1}=9\)
6/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
7/ \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3\sqrt{x}\)
Giải các phương trình sau:
1. \(x^4-4x^3-6x^2-4x+1=0\)
2. \(x^4-4x^2+12x-9=0\)
3. \(x^4-4x=1\)
4. \(\left(x+2\right)\left(x+3\right)\left(x+8\right)\left(x+12\right)=4x^2\)
5. \(x^4+4x^3+3x^2+2x-1=0\)
Cho x = 1 + \(\sqrt[3]{2}+\sqrt[3]{4}\)
Tính M = \(x^5\)\(-4x^4+x^3-x^2-2x+2015\)
Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Cho x=\(\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính A=(4x5+4x4-x3+1)19+\(\sqrt{4x^5+4x^4-5x^3+5x}\)+\(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2019}\)
\(\frac{x^2-3x+5}{x^2-4x+5}-\frac{x^2-5x+5}{x^2-6x+5}=-\frac{1}{4}\)
giải các pt sau
a)10x2-x-11=0 b)2x2-3x-2=0 c)2x2-8=0 d)3x2-5x=0 e)x2-2x+1=0 f)3x4-12x2+9=0 g)x4-4x2-5=0
n)x3-3x2-x+3=0 m)x4-3x2-4=0 h)\(\frac{12}{x-1}-\frac{8}{x+1}=1\)
i)x3+6x2+5x=0 k)3x2-x-6=0