\(x=1+\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x-1=\sqrt[3]{2}+\sqrt[3]{4}\)
\(\Rightarrow\left(x-1\right)^3=\left(\sqrt[3]{2}+\sqrt[3]{4}\right)^3\)
\(\Rightarrow x^3-3x^2+3x-1=6+6\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)
\(\Rightarrow x^3-3x^2-3x=1\)
\(\Rightarrow A=1+2020=2021\)