cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
gọi x1 ,x2 là nghiệm của pt \(x^2+2x-5=0\) tính A=\(\left(x_1-x_2\right)^2+x_1x_2\)
Cho PT: \(x^2-\left(3m-1\right)x+2m^2-m=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x_1=x_2^2\)
Cho phương trình: \(x^2-\left(a+b\right)x+ab=0\) (x là ẩn), có 2 nghiệm x1, x2. Tìm x1, x2 biết: \(x_1^2+x_2^2+2=2\left(x_1+x_2-2x_1x_2\right)\)
cho pt \(x^2-4nx+12n-9=0\)
tìm giá trị của n để pt trên có 2 nghiệm x1; x2 thỏa mãn đẳng thức
\(x_1\left(x_2+3\right)+x_2\left(x_1+3\right)-54=0\)
Cho PT: \(x^2-\left(2m+3\right)\). Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn:\(1< x_1< x_2< 7\)
tìm m để các pt bậc 2 ẩn x sau: \(x^2-\left(m+1\right)x+2=0\) có 2 nghiệm x1, x2 t/m:
\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\) =14
cho phương trình ẩn x: \(x-\sqrt{6x}-3+2m=0\left(1\right)\)
tìm m để pt có 2 nghiệm x = x1, x = x2 thỏa mãn \(\frac{x_1+x_2}{\sqrt{x_1}+\sqrt{x_2}}=\frac{\sqrt{24}}{3}\)