\(\left\{{}\begin{matrix}a=\dfrac{1}{x}\\b=\dfrac{1}{y}\\c=\dfrac{1}{z}\end{matrix}\right.\) \(\Leftrightarrow\begin{matrix}a+b+c=1\\a^4+b^4+c^4\ge abc\end{matrix}\) \(x,y,z\ne0\Rightarrow a,b,c\ne0\)
\(a^2+b^2+x^2\ge ab+bc+ac\) (*){cơ bản} \(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\ge\left(ab.ac\right)+\left(ab.bc\right)+\left(ac.bc\right)=abc\left(a+b+c\right)=abc\)
(*) bình phương hai vế
\(\Leftrightarrow a^4+b^4+c^4+2\left(ab\right)^2+2\left(ac\right)^2+2\left(bc\right)^2\ge\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^4+b^4+c^4\ge-\left[\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2\right]+2abc\ge-abc+2abc=abc=>dpcm\)Đẳng thức:
a=b=c=1/3=> x=y=z=3
ta co \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\) \(\Rightarrow\) \(\dfrac{1}{x.x}+\dfrac{1}{y.y}+\dfrac{1}{z.z}=1\)
\(\Rightarrow\dfrac{1}{x.x.x}+\dfrac{1}{y.y.y}+\dfrac{1}{z.z.z}=1\)\(\Rightarrow\dfrac{1}{x.x.x.x}+\dfrac{1}{y.y.y.y}+\dfrac{1}{z.z.z.z}=1\Leftrightarrow\dfrac{1}{x^4}+\dfrac{1^{ }}{y^4}+\dfrac{1}{z^4}=1\)
\(\Rightarrow\)\(\dfrac{1}{x^4}+\dfrac{1}{y^4}+\dfrac{1}{z^4}\)>= \(\dfrac{1}{x.y.z}\)