\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\\ =\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
Thay \(x+y=3;xy=2\)
\(=3.\left(3^2-3.2\right)=9\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\\ =\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]\)
Thay \(x+y=3;xy=2\)
\(=3.\left(3^2-3.2\right)=9\)
Thực hiện các phép tính sau:
a) \(18{x^4}{y^3}:12{\left( { - x} \right)^3}y\)
b) \({x^2}{y^2} - 2x{y^3}:\left( {\dfrac{1}{2}x{y^2}} \right)\)
Cho đa thức \(P = 3{x^2}y - 2x{y^2} - 4xy + 2\).
a) Tìm đa thức \(Q\) sao cho \(Q - P = - 2{x^3}y + 7{x^2}y + 3xy\)
b) Tìm đa thức \(M\) sao cho \(P + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\)
Thực hiện các phép tính sau:
a) \({x^2}y\left( {5xy - 2{x^2}y - {y^2}} \right)\)
b) \(\left( {x - 2y} \right)\left( {2{x^3} + 4xy} \right)\)
Thực hiện các phép tính sau:
a) \(\dfrac{{8y}}{{3{x^2}}} \cdot \dfrac{{9{x^2}}}{{4{y^2}}}\)
b) \(\dfrac{{3x + {x^2}}}{{{x^2} + x + 1}} \cdot \dfrac{{3{x^3} - 3}}{{x + 3}}\)
c) \(\dfrac{{2{x^2} + 4}}{{x - 3}} \cdot \dfrac{{3x + 1}}{{x - 1}}:\dfrac{{{x^2} + 2}}{{6 - 2x}}\)
d) \(\dfrac{{2{x^2}}}{{3{y^3}}}:\left( { - \dfrac{{4{x^3}}}{{21{y^2}}}} \right)\)
e) \(\dfrac{{2x + 10}}{{{x^3} - 64}}:\dfrac{{{{\left( {x + 5} \right)}^2}}}{{2x - 8}}\)
f) \(\dfrac{1}{{x + y}}\left( {\dfrac{{x + y}}{{xy}} - x - y} \right) - \dfrac{1}{{{x^2}}}:\dfrac{y}{x}\)
Thực hiện các phép tính sau:
a) \(\dfrac{{2{x^2} - 1}}{{x - 2}} + \dfrac{{ - {x^2} - 3}}{{x - 2}}\)
b) \(\dfrac{x}{{x + y}} + \dfrac{y}{{x - y}}\)
c) \(\dfrac{1}{{x - 1}} - \dfrac{2}{{{x^2} - 1}}\)
d) \(\dfrac{{x + 2}}{{{x^2} + xy}} - \dfrac{{y - 2}}{{xy + {y^2}}}\)
e) \(\dfrac{1}{{2{x^2} - 3x}} - \dfrac{1}{{4{x^2} - 9}}\)
g) \(\dfrac{{2x}}{{9 - {x^2}}} + \dfrac{1}{{x - 3}} - \dfrac{1}{{x + 3}}\)
Đơn thức nào sau đây đồng dạng với đơn thức \( - 2{x^3}y\)?
A. \(\dfrac{1}{3}{x^2}yx\)
B. \(2{x^3}yz\)
C. \( - 2{x^3}z\)
D. \(3x{y^3}\)
Biểu thức nào sau đây không phải là đa thức bậc 4?
A. \(2{x^2}yz\)
B. \({x^4} - \dfrac{1}{3}{x^3}{y^2}\)
C. \({x^2}y + xyzt\)
D. \({x^4} - {2^5}\)
Phân tích các đa thức sau thành nhân tử:
a) \({\left( {x - 1} \right)^2} - 4\)
b) \(4{x^2} + 12x + 9\)
c) \({x^3} - 8{y^6}\)
d) \({x^5} - {x^3} - {x^2} + 1\)
e) \( - 4{x^3} + 4{x^2} + x - 1\)
f) \(8{x^3} + 12{x^2} + 6x + 1\)
Tính giá trị của đa thức \(P = x{y^2}z - 2{x^2}y{z^2} + 3yz + 1\) khi \(x = 1\); \(y = - 1\); \(z = 2\)