\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)
\(=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
\(A=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
\(=2\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x^2+2xy+y^2\right)\)
\(=4x^2+4xy+4y^2-3x^2-6xy-3y^2\)
\(=x^2-2xy+y^2=\left(x-y\right)^2=2^2=4\)
Cho x-y=7
Tính
a/ \(A=x^3-3xy\left(x-y\right)-y^3-x^2-2xy-y^2\)
b/ \(B=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
Tính
a) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right)\left(x+2\right)\)
b) \(\left(x+y\right)^3-x.\left(x+3y\right)^2+y\left(y-3x\right)^2\)
Rút gọn
a) \(x.\left(x+4\right).\left(x-4\right)-\left(x^2+1\right).\left(x-1\right)\)
b) \(\left(y-3\right).\left(y+3\right).\left(y^2+9\right)-\left(y^2+2\right).\left(y^2-2\right)\)
Rút gọn : \(\frac{1}{\left(x+y\right)^3}.\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^5}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Tính
\(\left(x+y\right)^3-x.\left(x+3y\right)^2+y.\left(y-3x\right)^2\)
Tinh
a) \(\left(x+y\right)^3+\left(y-x\right)^3\)
b) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right).\left(x+2\right)\)
Bài 1. Tìm GTNN của A.
A =\(\frac{x^4+2x^3+8x+16}{x^4-2x^3+8x^2-8x+16}\)
Bài 2. Rút gọn biểu thức và tính giá trị với x + y = 2005
P = \(\frac{x\left(x+5\right)+y\left(y+5\right)+2\left(xy-3\right)}{x\left(x+6\right)+y\left(y+6\right)+2xy}\)
Bài 3. Cho b>a>0 và \(\frac{a^2+b^2}{ab}\) = \(\frac{10}{3}\)
Tính A = \(\frac{a-b}{a+b}\)
Cho \(x+y+z=1\) Chứng minh \(x^3+y^3+z^3-3xyz=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\)
Chứng minh :
a) \(\left(x-1\right)\left(x^2+x+1\right)=x^3-1\)
b) \(\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=x^4-y^4\)