a)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1^2=1\)
\(\Rightarrow A=x^2+y^2\ge\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)
b)Ta có BĐT \(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge\left(2\sqrt{xy}\right)^2\)
\(\Leftrightarrow1^2\ge4xy\Leftrightarrow1\ge xy\Leftrightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow-xy\ge-\dfrac{1}{4}\Rightarrow B=3-xy\ge3-\dfrac{1}{4}=\dfrac{11}{4}\)
Đẳng thức xảy ra khi \(x=y=\dfrac{1}{2}\)