Bài 1: Cho biểu thức A = 1 - \(\dfrac{\sqrt{x}}{1+\sqrt{x}}\), B = \(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)+ \(\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\)- \(\dfrac{10-5\sqrt{x}}{x-5\sqrt{x}+6}\)
(với x ≥ 0, x ≠ 4, x ≠ 9)
a, Tính giá trị của A biết x = 6-2\(\sqrt{5}\)
b, Rút gọn P = A : B
c, Tìm giá trị nhỏ nhất của P
Cho biểu thức:
\(P=\dfrac{x-\sqrt{x}}{x-9}+\dfrac{1}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3};x\ge0,x\ne9\)
1) Rút gọn biểu thức P.
2) Tính giá trị của P trong các trường hợp sau:
a) \(x=\dfrac{9}{4}\)
b) \(x=\sqrt{27+10\sqrt{2}}-\sqrt{18+8\sqrt{2}}\)
3) Tìm x để \(\dfrac{1}{P}>\dfrac{5}{4}\)
Cho biểu thức sau:
\(A=\left[\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}}{3-\sqrt{x}}-\dfrac{3x+3}{x-9}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a) Rút gọn biểu thức A.
b) Tính giá trị của A khi \(x=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
c) Tìm các giá trị nguyên của x để A có giá trị nguyên.
1/
A = \(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\) là một số nguyên
2/
a) Cho x = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\). Tính giá trị biểu thức:
P = \(\dfrac{x^4-4x^3+x^2+6x+12}{x^2-2x+12}\)
b) Cho x = \(1+\sqrt[3]{2}\) . Tính giá trị của biểu thức B = \(x^4-2x^4+x^3-3x^2+1942\)
3/
Rút gọn:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
B = \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
Làm ơn, giúp mik với. Mik đang cần gấp!
Cho biểu thức \(P=x^3+y^3-3\left(x+y\right)+2021\). Tính giá trị biểu thức P với :
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
và \(y=\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)
B = (sqrt(x + 1))/(sqrt(x) + 2) A = (sqrt(x) - 3)/(sqrt(x) + 2) + (sqrt(x))/(sqrt(x) - 2) - (6 + sqrt(x))/(x - 4) và với x>0, x ne4 a) Tính giá trị của biểu thức B tại x = 9 b) Rút gọn biểu thức A . c) Cho P = A/R So sánh P với 2.
cho biểu thức A=\(\frac{2\sqrt{x}+1}{x+\sqrt{x}}\) và B=\(\left(1-\frac{2\sqrt{x}}{3\sqrt{x}+1}+\frac{\sqrt{x}+1}{9x-1}\right):\frac{3}{3\sqrt{x}+1}\) với x>0, x≠\(\frac{1}{9}\)
1, tính giá trị của A khi x=\(\left(1+\frac{10+\sqrt{10}}{1+\sqrt{10}}\right)\left(\frac{10-\sqrt{10}}{\sqrt{10}-1}-1\right)\)
2, rút gọn biểu thức B
3, đặt P=A.B. tìm các giá trị nguyên của x để P có giá trị nguyên
Cho \(A=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)\
Rút gọn A
cho biểu thức P=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\) với x\(\ge\)0; x\(\ne\)9
1.tìm ĐKXĐ và rút gọn P
2.tính P khi x=7+2\(\sqrt{3}\)
3.tìm x để P<1