Áp dụng BĐT :
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
sai đề.
sửa lại:
cho x dương, y dương và \(x^2+y^2=1\)
tìm giá trị lớn nhất của\(x+y+2\left(x+y\right)^2\)
Áp dụng BĐT :
\(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)
sai đề.
sửa lại:
cho x dương, y dương và \(x^2+y^2=1\)
tìm giá trị lớn nhất của\(x+y+2\left(x+y\right)^2\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=1. Tìm giá trị lớn nhất của biểu thức: \(B=\sqrt{x^2+xyz}+\sqrt{y^2+xyz}+\sqrt{z^2+xyz}+9\sqrt{xyz}\)
cho x;y là 2 số dương thay dổi. Tìm giá trị nhỏ nhất của biểu thức :
S = \(\dfrac{x+y^2}{x^2+y^2}+\dfrac{x+y^2}{xy}\)
cho x;y là 2 số dương thay dổi. Tìm giá trị nhỏ nhất của biểu thức :
S = \(\dfrac{x+y^2}{x^2+y^2}+\dfrac{x+y^2}{xy}\)
cho x;y là các số thực dương thỏa mãn x +y \(\ge3\) tìm giá trị nhỏ nhất của S = x+y+ \(\frac{1}{2x}+\frac{2}{y}\)
cho các số thực dương x,y thỏa mãn \(x+\dfrac{1}{y}\le1\) tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
Cho các số thực x, y dương thỏa mãn x + \(\dfrac{1}{y}\) \(\le\) 1; Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{x^2-2xy+2y^2}{x^2+xy}\)
Cho x,y là số thực dương thỏa mãn:x+y\(\le1\)
Tìm giá trị nhỏ nhất của biểu thức:A=\(\dfrac{1}{x^2+y^2}+\dfrac{4}{xy}+8xy\)
1, cho x,y là các số thực dương thỏa mãn điều kiện:x+y≤1. Tìm giá trị nhỏ nhất của biểu thức: K=\(4xy+\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}\)
là số nguyên tố