\(xy+\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=\sqrt{2009}\)
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2009\)
\(x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2009\)
\(x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2xy\sqrt{\left(x^2+1\right)\left(y^2+1\right)}=2008\)
\(\left(x\sqrt{y^2+1}+y\sqrt{x^2+1}\right)^2=2008\)
\(\Leftrightarrow A^2=2009\)
\(\Leftrightarrow A=\sqrt{2009}\) khi x, y > 0 hoặc \(A=-\sqrt{2009}\) khi x, y < 0