Ta có : \(x^2+\dfrac{1}{x^2}=7\)
\(\Leftrightarrow x^2+\dfrac{1}{x^2}+2=9\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2=9\)
\(\Leftrightarrow x+\dfrac{1}{x}=3\left(x>0\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=27\)
\(\Leftrightarrow x^3+3x^2.\dfrac{1}{x}+3x.\dfrac{1}{x^2}+\dfrac{1}{x^3}=27\)
\(\Leftrightarrow x^3+3x+\dfrac{3}{x}+\dfrac{1}{x^3}=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3\left(x+\dfrac{1}{x}\right)=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}+3.3=27\)
\(\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)
Lại có : \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)\)
\(=x^5+x+\dfrac{1}{x}+\dfrac{1}{x^5}\)
\(=x^5+\dfrac{1}{x^5}+3\left(1\right)\)
Mặt khác : \(\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)=7.18=126\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow x^5+\dfrac{1}{x^5}+3=126\)
\(\Rightarrow x^5+\dfrac{1}{x^5}=123\in Z\)
\(\left(đpcm\right)\)