Cho ∆ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD = BA. Qua D vẽ đường vuông góc BC cắt AC tại E, cắt BA tại F.
a) Chứng minh ∆ABE=∆DBE
b) Chứng minh BE là đường trung trực của đoạn AD.
c) Chứng minh ∆BCF cân
Vẽ hình ra giúp tớ nha ^^
Bài 3: Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm. a) Tính độ dài AC. b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh: ΔABD = ΔEBD và AE ⊥ BD. c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC. d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng.
cho tam giác abc có ab=6cm ac=8cm bc=10cm
a) hãy chứng minh abc là tam giác vuông
b) trên cạnh bc lấy e sao cho be=ba kẻ ed vuông góc ac (d thuộc ac)
chứng minh rằng bd là tia phân giác của b
c) gọi f là giao điểm của ed và ba .chứng minh rằng tam giác dec = tam giác daf từ đó suy ra df> de
d) cmr:ad vuông góc với cf
Cho ABC có . Vẽ đường phân giác AD (D BC). Qua D dựng đường thẳng vuông góc với AC tại M cắt đường thẳng AB tại N. Gọi I là giao điểm của AD và BM. a. Chứng minh BAD = MAD b. Chứng minh AD là trung trực của BM c. Chứng minh ANC là tam giác đều d. Chứng minh BI < ND
Cho tam giác ABC vuông tại A có am là đường trung tuyến trên tia đối của MA lấy điểm D sao cho MD = MA
a, chứng minh tam giác ACD vuông
b ,Gọi K là trung điểm của AC Chứng minh KB bằng KD
c , KD cắt BC tại I và KB cắt AD tại N . Chứng minh tg KNI cân
Cho ΔABC vuông tại A. Tia phân giác của \(\widehat{ABC}\) cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA.
a) Chứng minh BD là đường trung trực của đoạn thẳng AE.
b) Qua A kẻ đường thẳng song song với BD cắt ED tại K. Chứng minh: KE < 2AB
Cho ∆ABC cân tại A, đường cao BH, CK a) Chứng minh BH = CK b) Chứng minh HK // BC c) BH cắt CK tại I. Gọi trung điểm AI là M, trung điểm AH là N. Chứng minh MN//BH d) Gọi giao điểm của IN và HM là K. Gọi D là trung điểm IH. Chứng minh A, K, D thẳng hàng e) Chứng minh: MN = 1/2 IK
2: Cho tam giác ABC cân tại A. Trên Tia đối của tia BA lấy điểm D, trên tia đối của
tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD
a) Chứng minh rằng IB = IC, ID = IE.
b) Chứng minh rằng BC song song DE.
c) Gọi M là trung điểm BC. Chứng minh rằng ba điểm A, M, I thẳng hàng.
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM