Cho tam giác ABC vuông tại A ( AB < AC), đường cao AH. Cho BC = 5cm, BH = 1,8cm. Gọi M là trung điểm BC. Đường trung trực BC cắt AC tại D
a) Tính AB, AH
b) Tìm tỉ số diện tích tam giác DMC và tam giác ABC
Cho tam giác ABC vuông tại A, AB>AC. AH là đường cao. BC=5; BH=1,8. Đường trung trực của BC cắt AC tại D.
a) Tính AB, AH
b) Tính tỉ số diện tích SDMC và SABC.
51.387 lượt xem
TrướcSau![]()
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Cho tam giác ABC vuông tại A ( AB < AC ) , đường cao AH ( H thuộc BC ) ; BD là đường phân giác của góc ABC ( D thuộc AC ) , BD cắt AH tại M
a) CM tam giác ABH đồng dạng tam giác CAB ; tam giác BAM đồng dạng tam giác BCD
b) CM \(\frac{AB}{AD}=\frac{CB}{CD}vàAB.AM=BC.HM\)
c) Trường hợp có BC = 3AB , CM \(S_{ABC}=36.S_{BHM}\)
Cho △ABC vuông tại A(AB<AC),đường cao AH.M là t/điểm BC.Biết BH=7,2cm;AC=12,8cm. Đường vuông góc với BC tại M cắt AC tại D
a)CMinh AC.DC=1/2BC
b)Tính diện tích △ABC \(S_{ABC}\)\(_{ABC}\)
c)Tính diện tích △DMC
cho tm giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?