Bài 2: Định lý đảo và hệ quả của định lý Talet

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kamato Heiji

Cho tứ giác ABCD có \(\widehat{A}=90^o;\widehat{D}=90^o\) . Góc A và góc D là hai góc đáy . Trên BC lấy điểm M là điểm nằm giữa sao cho MC=CD , MB= AB . Gọi giao điểm của AC và BD là N  chứng minh MN\(\perp AD\)

Kamato Heiji
23 tháng 1 2021 lúc 17:31

undefined

Hình ảnh minh họa , tại e k biết vẽ nhưng A và D = 90 độ và MC=CD , MB=AB . Hình dạng đúng rồi nhưng số đo góc và cạnh k đúng

Hồng Phúc
23 tháng 1 2021 lúc 17:42

Hình vẽ:

Từ giả thiết ta có \(\dfrac{MC}{MB}=\dfrac{CD}{AB}\left(1\right)\)

Mặt khác \(\left\{{}\begin{matrix}BA\perp AD\\CD\perp AD\end{matrix}\right.\Rightarrow BA//CD\)

\(\Rightarrow\dfrac{CD}{AB}=\dfrac{NC}{NA}\left(2\right)\) (Định lí Talet)

\(\left(1\right);\left(2\right)\Rightarrow\dfrac{MC}{MB}=\dfrac{NC}{NA}\)

\(\Rightarrow MN//AB\)

Mà \(AB\perp AD\Rightarrow MN\perp AD\)


Các câu hỏi tương tự
Lưu huỳnh ngọc
Xem chi tiết
Mộc Vân
Xem chi tiết
Lưu huỳnh ngọc
Xem chi tiết
khoa dao
Xem chi tiết
Thùy Dương Nguyễn
Xem chi tiết
Lê Huy Hoang
Xem chi tiết
8/5_06 Trương Võ Đức Duy
Xem chi tiết
Đoàn Thu Uyên
Xem chi tiết
Thu Anh
Xem chi tiết