Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M và N là hai điểm di động tương ứng trên AD và BE sao cho :
\(\dfrac{AM}{MD}=\dfrac{BN}{NE}\)
Chứng minh rằng đường thẳng MN luôn luôn song song với một mặt phẳng cố định. Hãy chỉ ra mặt phẳng cố định đó ?
Cho chình chóp S ABCD . , đáy ABCD là hình bình hành. Gọi M N, lần lượt là trọng tâm các tam giác SAB SAD , ; P là điểm thuộc cạnh AD sao cho AP=2PD.
1) Chứng minh MP song song với mặt phẳng (SBD)
2) Gọi (α) là mặt phẳng qua N song song với (SCD). Xác định thiết diện của (α)và hình chóp. Thiết diện là hình gì?
3) Gọi (β) là mặt phẳng chứa MP và song song với SA .Dựng thiết diện giữa (β) và hình chóp S ABCD . .
4) Gọi E là trung điểm cạnh CD . Xác định thiết diện của (EMN) và hình chóp S ABCD . . Gọi K là giao điểm của (EMN) và đường thẳng SA . Tính KS/KA .
Cho hình chóp S.ABCD Gọi M N P Q lần lượt là trung điểm của các cạnh SA SB SC SD Chứng minh rằng hai mặt phẳng MNP và (NPQ)song song với mặt phẳng ABCD Từ đó suy ra bốn điểm M N P Q đồng phẳng
Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình thang , AD song song BC . Các điểm M,N lần lươt là trung điểm của các cạnh AB,CD, G là trọng tâm tam giác SAD
a, chứng minh rằng đường thẳng BC song song với mặt phẳng (SMN)
b, Xác định thiết diện của hình chóp cắt bởi mặt phẳng (GMN). thiết diện là hình gì ?
giúp e nha mn maii e nôpp gấp ruiiii !!
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M và M' lần lượt là trung điểm của các cạnh BC và B'C'
a) Chứng minh rằng AM song song với A'M'
b) Tìm giao tuyến của mặt phẳng (AB'C') với đường thẳng A'M
c) Tìm giao tuyến d của hai mặt phẳng (AB'C') và (BA'C')
d) Tìm giao điểm G của đường thẳng d với mặt phẳng (AM'M)
Chứng minh G là trọng tâm của tam giác AB'C'
Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng phân biệt. Trên các đường chéo AC và BFF lần lượt lấy các điểm M và N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M và N lần lượt cắt AD và AF tại M' và N'. Chứng minh
a) (ADF) // (BCE)
b) M'N' //DF
c) (DEF) // (MM'N'N) và MN // (DEF)
Cho hình hộp ABCD.A'B'C'D'
a) Chứng minh rằng hai mặt phẳng (BDA') và (B'D'C) song song với nhau
b) Chứng minh rằng đường chéo AC' đi qua trọng tâm \(G_1;G_2\) của hai tam giác BDA' và B'D'C
c) Chứng minh \(G_1;G_2\) chia đoạn AC' thành ba phần bằng nhau
d) Gọi O và I lần lượt là tâm các hình bình hành ABCD và AA'C'C. Xác định thiết diện của mặt phẳng (A'IO) với hình hộp đã cho
Cho hai tia Ax, By chéo nhau. Lấy M, N lần lượt là các điểm di động trên Ax, By. Gọi \(\left(\alpha\right)\) là mặt phẳng chứa By và song song với Ax. Đường thẳng qua M và song song với AB cắt \(\left(\alpha\right)\) tại M'
a) Tìm tập hợp điểm M' ?
b) Gọi I là trung điểm của MN. Tìm tập hợp các điểm I khi AM = BN ?
Cho hình chóp S.ABCD. Gọi \(A_1\) là trung điểm của cạnh SA và \(A_2\) là trung điểm của đoạn \(AA_1\). Gọi \(\left(\alpha\right)\) và \(\left(\beta\right)\) là hai mặt phẳng song song với mặt phẳng (ABCD) và lần lượt đi qua \(A_1,A_2\). Mặt phẳng \(\left(\alpha\right)\) cắt các cạnh SB, SC, SD lần lượt tại \(B_1;C_1;D_1\). Mặt phẳng \(\left(\beta\right)\) cắt các cạnh SB, SC, SD lần lượt tại \(B_2;C_2;D_2\). Chứng minh :
a) \(B_1;C_1;D_1\) lần lượt là trung điểm của các cạnh SB, SC, SD
b) \(B_1B_2=B_2B;C_1C_2=C_2C;D_1D_2=D_2D\)
c) Chỉ ra các hình chóp cụt có một đáy là tứ giác ABCD