Cho tứ diện ABCD. Lấy điểm S nằm ngoài mặt phẳng (ABCD). Gọi lần lượt G1, G2 là trọng tâm của tam giác SAB và tam giác SBD Chứng minh BD song song với mặt phẳng (SG1G2)
Cho tứ diện ABCD. Gọi G1, G2, G3 lần lượt là trọng tâm các tam giác ABC, ACD, ADB. M là điểm di động bên trong tứ diện sao cho \(G_1M\) luôn song song với mặt phẳng (ACD). Tìm tập hợp những điểm M
giúp mình giải những bài này vs, mình đg cần gấp, thanks.
bài 1: Cho tứ diện ABCD . Gọi G1 và G2 lần lượt là trọng tâm của tam giác ACD và BCD.
1. Tìm giao tuyến của hai mặt phẳng (CG1G2) và (ABD).
2. Chứng minh rằng G1G2 song song mặt phẳng (ABC).
bài 2: cho tứ dện ABCD có G là trọng tâm. Gọi A1 là trọng tâm của tam giác BCD
a. CMR: A, G, A1 thẳng hàng
b. CMR: GA=3GA'
bài 3: cho tứ diện ABCD và 3 điểm P,Q,R lần lượt là trung điểm của các cạnh AB, CD; P là điểm nằm trên cạnh AD nhưng không trùng với trùng với trung điểm của AD. Tìm thiết diện của tứ diện cắt bởi (MNP)
Cho tứ diện ABCD. Gọi G1, G2 là trọng tâm tam giác BCD và ACD. Gọi I, J, K là trung điểm BD, AD, CD, tìm giao tuyến của (G1 G2 C) và (ADB), (G1G2B) và ( ACD), ( ABK) và (CIJ)
cho hình chóp S.ABCD có đáy ABCD là hình bình hành .Gọi O là giao điểm của AC và BD .M và N lần lượt là trung điểm của CD và SA . G là trọng tâm tam giác SAB .Gọi \(\Delta\) là giao tuyến của 2 mặt phẳng (SAD) và (SMG),P là giao điểm của đường thẳng OG và \(\Delta\) .Chứng minh P,N ,D thẳng hàng
(Giúp mk ý b với ạ!!!)
Cho hình chóp S.ABCD có G1, G2 lần lượt là trọng tâm các tam giác SAB và SAD.
a) Chứng minh rằng \(G_1G_2//BD\).
b) Dựng thiết diện của hình chóp cắt bởi \(\left(CG_1G_2\right)\)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh AB, mặt phẳng (P) đi qua M song song với cạnh AD và SB.
a) Xác định thiết diện của hình chóp cắt bởi mặt phẳng (P). Thiết diện là hình gì?
b) Gọi G1, G2 lần lượt là trọng tâm các tam giác SBC và SCD. Chứng minh G1G2 // mp(ABCD).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAB; I và M lần lượt là trung điểm của AB và SD.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD)
b) Gọi N là giao điểm DI và AC. Chứng minh rằng NG song song với (SCD)
c)Tìm giao điểm E của SO và (CGM). Tính tỉ số \(\frac{SE}{SO}\)
Cho tứ diện ABCD. Gọi \(G_1,G_2,G_3\) lần lượt là trọng tâm các tam giác ABC, ACD, ADB. M là điểm di động bên trong tứ diện sao cho GM luôn song song với mặt phẳng (ACD). Tìm tập hợp những điểm M