a/ Trong mặt phẳng (BCD), nối BO kéo dài cắt CD tại E
Trong mặt phẳng (ACD), nối AE cắt MN tại F
\(\Rightarrow F=MN\cap\left(ABO\right)\)
b/ Trong mặt phẳng (ABE), nối BF cắt AO tại P
\(\Rightarrow P=AO\cap\left(MNB\right)\)
a/ Trong mặt phẳng (BCD), nối BO kéo dài cắt CD tại E
Trong mặt phẳng (ACD), nối AE cắt MN tại F
\(\Rightarrow F=MN\cap\left(ABO\right)\)
b/ Trong mặt phẳng (ABE), nối BF cắt AO tại P
\(\Rightarrow P=AO\cap\left(MNB\right)\)
Cho tứ diện ABCD; M là trung điểm của canh AC. N là điểm thuộc cạnh AD sao cho AN = 2ND.
O là điểm thuộc miền trong của ∆BCD. Mệnh đề nào sau đây đúng ?
A. (OMN đi qua giao điểm của hai đt MN và CD B. (OMN) chứa đt CD
C. (OMN) chứa đt AB D. (OMN) đia qua điểm A
giải thích
Cho tứ diện ABCD. Gọi M,N,P lần lượt là trung điểm của AB,AD,AC trên BC,CD lấy các điểm EF sao cho BE=2EC , CF=2FD
a) Tìm giao điểm K của AD với (MEF) và tính AK trên KD
b) Tìm giao điểm của NP với (MEF)
Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' sao cho đường thẳng B'C' cắt đường thẳng BC tại K, đường thẳng C'D' cắt đường thẳng CD tại J, đường thẳng D'B' cắt đường thẳng DB tại I
a) Chứng minh ba điểm I, J, K thẳng hàng
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF)
Cho hình chóp S.ABCD có đáy ABCD là hình thang ( AD || BC, AD= 2BC ). Gọi M, N lần lượt là trung điểm SA và AB.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Chứng minh MN//(SBC)
c) Gọi O là giao điểm của AC và BD. Xác định thiết diện của hình chóp cắt bởi mặt phẳng (OMN)
Cho hình chóp A.BCD có đáy là hình thang ABCD (có đáy nhỏ BC). Gọi M, N lần lượt là trung điểm của AB và SD, O là giao điểm của AC và DM
a) Tìm giao điểm của MN và mặt phẳng (SAC)
b) Tìm thiết diện của hình chóp với mặt phẳng (NBC). Thiết diện đó là hình gì ?
Bài 3: Cho hình chóp .SABCD có AC\(\cap\)BD\(=\)M và .AB\(\cap\)CD\(=\)N Tìm giao tuyến của
mặt phẳng S.ABCD và mặt phẳng ABCD
Bài 4: Cho hình chóp .SABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến
của hai mặt phẳng (SAD) và (SBC) . Tìm giao tuyến d?
Bài 5: Cho hình chóp S.ABCD có đáy là hình thang, đáy lớn là AD và một điểm M
nằm trên SA. Mặt phẳng (P) qua M và song song với SD, AC. Xác định thiết diện của
(P) với hình chóp SABCD
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'
Xác định các giao điểm B', C', D' ?
Cho tứ diện ABCD và M là điểm bất kì thuộc miền trong của tam giác BCD. Qua M kẻ các tia song song với AB, AC, AD. Các tia này theo thứ tự cắt các mặt (ACD), (ABD), (ABC) lần lượt tại B', C', D'
Chứng minh :
\(\dfrac{MB'}{AB}+\dfrac{MC'}{AC}+\dfrac{MD'}{AD}=1\)